3.2.22 \(\int \frac {x^2}{(a+b x+c x^2)^{3/2} (d+e x+f x^2)} \, dx\) [122]

Optimal. Leaf size=609 \[ -\frac {2 \left (a (b c d-2 a c e+a b f)+c \left (b^2 d-a b e-2 a (c d-a f)\right ) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}-\frac {f \left (2 d (c d-a f)-(b d-a e) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}+\frac {f \left (2 d (c d-a f)-(b d-a e) \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}} \]

[Out]

-2*(a*(a*b*f-2*a*c*e+b*c*d)+c*(b^2*d-a*b*e-2*a*(-a*f+c*d))*x)/(-4*a*c+b^2)/((-a*f+c*d)^2-(-a*e+b*d)*(-b*f+c*e)
)/(c*x^2+b*x+a)^(1/2)-1/2*f*arctanh(1/4*(4*a*f+2*x*(b*f-c*(e-(-4*d*f+e^2)^(1/2)))-b*(e-(-4*d*f+e^2)^(1/2)))*2^
(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2-(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2))*(2*d*(-a*f+c*d)-(
-a*e+b*d)*(e-(-4*d*f+e^2)^(1/2)))/((-a*f+c*d)^2-(-a*e+b*d)*(-b*f+c*e))*2^(1/2)/(-4*d*f+e^2)^(1/2)/(c*e^2-2*c*d
*f-b*e*f+2*a*f^2-(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2)+1/2*f*arctanh(1/4*(4*a*f-b*(e+(-4*d*f+e^2)^(1/2))+2*x*(b
*f-c*(e+(-4*d*f+e^2)^(1/2))))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)
^(1/2))^(1/2))*(2*d*(-a*f+c*d)-(-a*e+b*d)*(e+(-4*d*f+e^2)^(1/2)))/((-a*f+c*d)^2-(-a*e+b*d)*(-b*f+c*e))*2^(1/2)
/(-4*d*f+e^2)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 3.77, antiderivative size = 609, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {1075, 1046, 738, 212} \begin {gather*} -\frac {2 \left (c x \left (-a b e-2 a (c d-a f)+b^2 d\right )+a (a b f-2 a c e+b c d)\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}-\frac {f \left (2 d (c d-a f)-\left (e-\sqrt {e^2-4 d f}\right ) (b d-a e)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {f \left (2 d (c d-a f)-\left (\sqrt {e^2-4 d f}+e\right ) (b d-a e)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((a + b*x + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

(-2*(a*(b*c*d - 2*a*c*e + a*b*f) + c*(b^2*d - a*b*e - 2*a*(c*d - a*f))*x))/((b^2 - 4*a*c)*((c*d - a*f)^2 - (b*
d - a*e)*(c*e - b*f))*Sqrt[a + b*x + c*x^2]) - (f*(2*d*(c*d - a*f) - (b*d - a*e)*(e - Sqrt[e^2 - 4*d*f]))*ArcT
anh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*
f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*((c*d
 - a*f)^2 - (b*d - a*e)*(c*e - b*f))*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]])
+ (f*(2*d*(c*d - a*f) - (b*d - a*e)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) + 2*(b
*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 -
4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*Sqrt[c*e
^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1046

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rule 1075

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((A_.) + (C_.)*(x_)^2)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_
Symbol] :> Simp[(a + b*x + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((b^2 - 4*a*c)*((c*d - a*f)^2 - (b*d - a*
e)*(c*e - b*f))*(p + 1)))*((A*c - a*C)*(2*a*c*e - b*(c*d + a*f)) + (A*b)*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)) +
 c*(A*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)) + C*(b^2*d - a*b*e - 2*a*(c*d - a*f)))*x), x] + Dist[1/((b^2 - 4*a*c
)*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1)), Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(
-2*A*c - 2*a*C)*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1) + (b^2*(C*d + A*f) - b*((Plus[A])*c*e + a*C*
e) + 2*(A*c*(c*d - a*f) - a*(c*C*d - a*C*f)))*(a*f*(p + 1) - c*d*(p + 2)) - e*((A*c - a*C)*(2*a*c*e - b*(c*d +
 a*f)) + (A*b)*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)))*(p + q + 2) - (2*f*((A*c - a*C)*(2*a*c*e - b*(c*d + a*f))
+ (A*b)*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)))*(p + q + 2) - (b^2*(C*d + A*f) - b*(A*c*e + a*C*e) + 2*(A*c*(c*d
- a*f) - a*(c*C*d - a*C*f)))*(b*f*(p + 1) - c*e*(2*p + q + 4)))*x - c*f*(b^2*(C*d + A*f) - b*(A*c*e + a*C*e) +
 2*(A*c*(c*d - a*f) - a*(c*C*d - a*C*f)))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, q}
, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && LtQ[p, -1] && NeQ[(c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f
), 0] &&  !( !IntegerQ[p] && ILtQ[q, -1]) &&  !IGtQ[q, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (a+b x+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx &=-\frac {2 \left (a (b c d-2 a c e+a b f)+c \left (b^2 d-a b e-2 a (c d-a f)\right ) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}-\frac {2 \int \frac {-\frac {1}{2} \left (b^2-4 a c\right ) d (c d-a f)-\frac {1}{2} \left (b^2-4 a c\right ) (b d-a e) f x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}\\ &=-\frac {2 \left (a (b c d-2 a c e+a b f)+c \left (b^2 d-a b e-2 a (c d-a f)\right ) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}+\frac {\left (f \left (2 d (c d-a f)-(b d-a e) \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{\sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}-\frac {\left (f \left (2 d (c d-a f)-(b d-a e) \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{\sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}\\ &=-\frac {2 \left (a (b c d-2 a c e+a b f)+c \left (b^2 d-a b e-2 a (c d-a f)\right ) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}-\frac {\left (2 f \left (2 d (c d-a f)-(b d-a e) \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}+\frac {\left (2 f \left (2 d (c d-a f)-(b d-a e) \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right )}\\ &=-\frac {2 \left (a (b c d-2 a c e+a b f)+c \left (b^2 d-a b e-2 a (c d-a f)\right ) x\right )}{\left (b^2-4 a c\right ) \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {a+b x+c x^2}}-\frac {f \left (2 d (c d-a f)-(b d-a e) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}+\frac {f \left (2 d (c d-a f)-(b d-a e) \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2-(b d-a e) (c e-b f)\right ) \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.93, size = 534, normalized size = 0.88 \begin {gather*} \frac {-2 \left (b^2 c d x+a c (b d-2 c d x-b e x)+a^2 (-2 c e+b f+2 c f x)\right )-\left (b^2-4 a c\right ) \sqrt {a+x (b+c x)} \text {RootSum}\left [b^2 d-a b e+a^2 f-4 b \sqrt {c} d \text {$\#$1}+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2+b e \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {b c d^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 a b d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+a^2 e f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 c^{3/2} d^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+2 a \sqrt {c} d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+b d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2-a e f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{2 b \sqrt {c} d-a \sqrt {c} e-4 c d \text {$\#$1}-b e \text {$\#$1}+2 a f \text {$\#$1}+3 \sqrt {c} e \text {$\#$1}^2-2 f \text {$\#$1}^3}\&\right ]}{\left (b^2-4 a c\right ) \left (c^2 d^2-b c d e+f \left (b^2 d-a b e+a^2 f\right )+a c \left (e^2-2 d f\right )\right ) \sqrt {a+x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((a + b*x + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

(-2*(b^2*c*d*x + a*c*(b*d - 2*c*d*x - b*e*x) + a^2*(-2*c*e + b*f + 2*c*f*x)) - (b^2 - 4*a*c)*Sqrt[a + x*(b + c
*x)]*RootSum[b^2*d - a*b*e + a^2*f - 4*b*Sqrt[c]*d*#1 + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 + b*e*#1^2 - 2*a*f*#1^2
- 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (b*c*d^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*a*b*d*f*Log[-(Sqrt
[c]*x) + Sqrt[a + b*x + c*x^2] - #1] + a^2*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*c^(3/2)*d^2*
Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 + 2*a*Sqrt[c]*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] -
 #1]*#1 + b*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2 - a*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x +
c*x^2] - #1]*#1^2)/(2*b*Sqrt[c]*d - a*Sqrt[c]*e - 4*c*d*#1 - b*e*#1 + 2*a*f*#1 + 3*Sqrt[c]*e*#1^2 - 2*f*#1^3)
& ])/((b^2 - 4*a*c)*(c^2*d^2 - b*c*d*e + f*(b^2*d - a*b*e + a^2*f) + a*c*(e^2 - 2*d*f))*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1991\) vs. \(2(560)=1120\).
time = 0.18, size = 1992, normalized size = 3.27

method result size
default \(\text {Expression too large to display}\) \(1992\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)

[Out]

2/f*(2*c*x+b)/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)+1/2*(-e*(-4*d*f+e^2)^(1/2)+2*d*f-e^2)/f^2/(-4*d*f+e^2)^(1/2)*(2/
(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*f^2/((x+1/2*(e+(-4*d*f+e^2)^(1/2)
)/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4
*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)-2*f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/(-b*f*(-4*d*f+
e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*(2*c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/f*(-c*(
-4*d*f+e^2)^(1/2)+b*f-c*e))/(2*c*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/
f^2-1/f^2*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)^2)/((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+
b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*
c*d*f+c*e^2)/f^2)^(1/2)-2/(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*f^2*2^(
1/2)/((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-b*f*(-4*d*
f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/
2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f
+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d
*f+e^2)^(1/2))/f)+2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(
x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)))+1/2*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2))/f^2/(-4*d*f+e^2)^(1/2)*(2/(b*f*(-4*d*f+
e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*f^2/((x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+(c*(
-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*
c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)-2*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*f/(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f
+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*(2*c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+(c*(-4*d*f+e^2)^(1/2)+b*f-
c*e)/f)/(2*c*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2-(c*(-4*d*f+e^2)^(
1/2)+b*f-c*e)^2/f^2)/((x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*
d*f+e^2)^(1/2)))+1/2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)-2/
(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*f^2*2^(1/2)/((b*f*(-4*d*f+e^2)^(1/
2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/
2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2
*2^(1/2)*((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(
-e+(-4*d*f+e^2)^(1/2)))^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(b*f*(-4*d*
f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))
))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-%e^2>0)', see `assume?`
for more det

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\left (a + b x + c x^{2}\right )^{\frac {3}{2}} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(c*x**2+b*x+a)**(3/2)/(f*x**2+e*x+d),x)

[Out]

Integral(x**2/((a + b*x + c*x**2)**(3/2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2}{{\left (c\,x^2+b\,x+a\right )}^{3/2}\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((a + b*x + c*x^2)^(3/2)*(d + e*x + f*x^2)),x)

[Out]

int(x^2/((a + b*x + c*x^2)^(3/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________